Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(10): 5281-5293, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347936

RESUMO

Gene silencing by RNA interference (RNAi) has emerged as a powerful treatment strategy across a potentially broad range of diseases. Tailoring siRNAs to silence genes vital for cancer cell growth and function could be an effective treatment, but there are several challenges which must be overcome to enable their use as a therapeutic modality, among which efficient and selective delivery to cancer cells remains paramount. Attempts to use antibodies for siRNA delivery have been reported but these strategies use either nonspecific conjugation resulting in mixtures, or site-specific methods that require multiple steps, introduction of mutations, or use of enzymes. Here, we report a method to generate antibody-siRNA (1:2) conjugates (ARCs) that are structurally defined and easy to assemble. This ARC platform is based on engineered dual variable domain (DVD) antibodies containing a natural uniquely reactive lysine residue for site-specific conjugation to ß-lactam linker-functionalized siRNA. The conjugation is efficient, does not compromise the affinity of the parental antibody, and utilizes chemically stabilized siRNA. For proof-of-concept, we generated DVD-ARCs targeting various cell surface antigens on multiple myeloma cells for the selective delivery of siRNA targeting ß-catenin (CTNNB1). A set of BCMA-targeting DVD-ARCs at concentrations as low as 10 nM revealed significant CTNNB1 mRNA and protein knockdown.


Assuntos
Região Variável de Imunoglobulina/química , Interferência de RNA , RNA Interferente Pequeno/química , Anticorpos/química , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno/farmacocinética , beta Catenina/genética
2.
J Am Chem Soc ; 139(25): 8537-8546, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28570818

RESUMO

Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analogue, as a modification of siRNA duplexes. We evaluated the impact of (S)- or (R)-GNA nucleotide incorporation on RNA duplex structure by determining three individual crystal structures. These structures indicate that the (S)-nucleotide backbone adopts a conformation that has little impact on the overall duplex structure, while the (R)-nucleotide disrupts the phosphate backbone and hydrogen bonding of an adjacent base pair. In addition, the GNA-T nucleobase adopts a rotated conformation in which the 5-methyl group points into the minor groove, rather than the major groove as in a normal Watson-Crick base pair. This observation of reverse Watson-Crick base pairing is further supported by thermal melting analysis of GNA-C and GNA-G containing duplexes where it was demonstrated that a higher thermal stability was associated with isoguanine and isocytosine base pairing, respectively, over the canonical nucleobases. Furthermore, it was also shown that GNA nucleotide or dinucleotide incorporation increases resistance against snake venom phosphodiesterase. Consistent with the structural data, modification of an siRNA with (S)-GNA resulted in greater in vitro potencies over identical sequences containing (R)-GNA. A walk of (S)-GNA along the guide and passenger strands of a GalNAc conjugate duplex targeting mouse transthyretin (TTR) indicated that GNA is well tolerated in the seed region of both strands in vitro, resulting in an approximate 2-fold improvement in potency. Finally, these conjugate duplexes modified with GNA were capable of maintaining in vivo potency when subcutaneously injected into mice.


Assuntos
Glicóis/química , Ácidos Nucleicos/química , RNA Interferente Pequeno/química , Animais , Cristalografia por Raios X , Inativação Gênica/efeitos dos fármacos , Concentração Inibidora 50 , Camundongos , Modelos Biológicos , Ácidos Nucleicos Heteroduplexes/química , RNA Interferente Pequeno/farmacologia , Receptores de Albumina/efeitos dos fármacos , Temperatura
3.
J Org Chem ; 81(6): 2261-79, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26940174

RESUMO

Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.


Assuntos
Exorribonucleases/química , Oligonucleotídeos/química , Pirimidinas/química , Sequência de Bases , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Estereoisomerismo , Termodinâmica
4.
Nat Med ; 21(5): 492-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849132

RESUMO

Hemophilia A and B are inherited bleeding disorders characterized by deficiencies in procoagulant factor VIII (FVIII) or factor IX (FIX), respectively. There remains a substantial unmet medical need in hemophilia, especially in patients with inhibitory antibodies against replacement factor therapy, for novel and improved therapeutic agents that can be used prophylactically to provide effective hemostasis. Guided by reports suggesting that co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, we developed an RNA interference (RNAi) therapeutic (ALN-AT3) targeting antithrombin (AT) as a means to promote hemostasis in hemophilia. When administered subcutaneously, ALN-AT3 showed potent, dose-dependent, and durable reduction of AT levels in wild-type mice, mice with hemophilia A, and nonhuman primates (NHPs). In NHPs, a 50% reduction in AT levels was achieved with weekly dosing at approximately 0.125 mg/kg, and a near-complete reduction in AT levels was achieved with weekly dosing at 1.5 mg/kg. Treatment with ALN-AT3 promoted hemostasis in mouse models of hemophilia and led to improved thrombin generation in an NHP model of hemophilia A with anti-factor VIII inhibitors. This investigational compound is currently in phase 1 clinical testing in subjects with hemophilia A or B.


Assuntos
Antitrombinas/química , Coagulação Sanguínea/efeitos dos fármacos , Fator IX/química , Fator VIII/química , Hemofilia A/tratamento farmacológico , Interferência de RNA , Animais , Relação Dose-Resposta a Droga , Feminino , Hemofilia A/genética , Hemostasia/efeitos dos fármacos , Homozigoto , Humanos , Masculino , Camundongos , Mutação
5.
J Am Chem Soc ; 136(49): 16958-61, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25434769

RESUMO

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


Assuntos
Acetilgalactosamina/química , Inativação Gênica , Hepatócitos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
6.
J Am Chem Soc ; 130(4): 1440-52, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18173272

RESUMO

A general, mild, and efficient 1,2-migration/cycloisomerization methodology toward multisubstituted 3-thio-, seleno-, halo-, aryl-, and alkyl-furans and pyrroles, as well as fused heterocycles, valuable building blocks for synthetic chemistry, has been developed. Moreover, regiodivergent conditions have been identified for C-4 bromo- and thio-substituted allenones and alkynones for the assembly of regioisomeric 2-hetero substituted furans selectively. It was demonstrated that, depending on reaction conditions, ambident substrates can be selectively transformed into furan products, as well as undergo selective 6-exo-dig or Nazarov cyclizations. Our mechanistic investigations have revealed that the transformation proceeds via allenylcarbonyl or allenylimine intermediates followed by 1,2-group migration to the allenyl sp carbon during cycloisomerization. It was found that 1,2-migration of chalcogens and halogens predominantly proceeds via formation of irenium intermediates. Analogous intermediate can also be proposed for 1,2-aryl shift. Furthermore, it was shown that the cycloisomerization cascade can be catalyzed by Brønsted acids, albeit less efficiently, and commonly observed reactivity of Lewis acid catalysts cannot be attributed to the eventual formation of proton. Undoubtedly, thermally induced or Lewis acid-catalyzed transformations proceed via intramolecular Michael addition or activation of the enone moiety pathways, whereas certain carbophilic metals trigger carbenoid/oxonium type pathway. However, a facile cycloisomerization in the presence of cationic complexes, as well as observed migratory aptitude in the cycloisomerization of unsymmetrically disubstituted aryl- and alkylallenes, strongly supports electrophilic nature for this transformation. Full mechanistic details, as well as the scope of this transformation, are discussed.


Assuntos
Carbono/química , Metais/química , Selênio/química , Alelos , Catálise , Química/métodos , Cobre/química , Furanos/química , Ouro/química , Halogênios/química , Isomerismo , Cetonas , Modelos Químicos , Estrutura Molecular , Pirróis/química
9.
J Org Chem ; 67(1): 95-8, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11777444

RESUMO

A mild, general, and efficient method for the synthesis of 2-monosubstituted and 2,5-disubstituted furans via the CuI-catalyzed cycloisomerization of alkynyl ketones was developed. It was demonstrated that furans containing both acid- and base-labile groups could be easily synthesized using this methodology. A plausible mechanism for this transformation is proposed.


Assuntos
Furanos/síntese química , Alcinos/química , Catálise , Cobre , Ciclização , Furanos/química , Iodetos , Isomerismo , Cetonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...